分类 AI科学 下的文章

论文: The Equalization Losses: Gradient-Driven Training for Long-tailed Object Recognition

代码:

解决长尾分布问题直观的做法有两类:设计数据重采样策略,或者对损失重加权(为不同类别或实例分配不同的权重)。大多数现有方法都是基于类别的频率设计的,然而这有个缺陷:这些方法不够鲁棒,因为广泛存在着容易的负样本和冗余的正样本。并且数据重采样还会增加训练时长。而本篇工作使用累积正负梯度比作为指标。它更稳定、更精确,能更好地反映模型的训练状态,对于长尾类别,正负梯度比接近0,而对于非长尾类别,正负梯度比接近1。本文根据当前的累积梯度动态地重新平衡正/负梯度,并以实现平衡梯度比为统一目标。基于此思想,论文得到了BCE loss、CE loss、Focal loss的均衡损失(Equalization loss)版本。

在本篇论文之前,论文作者已经在CVPR2020 《Equalization loss for long-tailed object recognition》和 CVPR2021 《Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection》发表了部分观点,而本篇论文像是对以往工作的大一统总结和扩展。

- 阅读剩余部分 -

2023年1月,AAAI 2023 实用AI挑战赛落下帷幕。我所在的team_kppkkp队获得总榜冠军。在此,分享一下我们队本次比赛的方案,抛砖引玉。

本次比赛由商汤科技联合北航刘祥龙教授团队,携手安徽合肥数据空间研究院、天数智芯、科大讯飞、OpenI 启智新一代人工智能开源开放平台等机构与企业,在国际顶级人工智能会议AAAI 2023上举办,旨在搭建一座连通学术与工业化落地的桥梁,筛选出效果好、效率高、鲁棒性强的模型设计,推动人工智能领域朝实用方向发展。

- 阅读剩余部分 -

我们观测到的数据总是包含噪声的,为了得到更准确的结果,卡尔曼最早在1960年提出卡尔曼滤波器,Kalman Filter 的目的是利用先验知识,根据一批采样数据$(X_1, X2, ...,X_n)$估计对象在n时刻的状态$Z_n$。例如我们在跟踪飞行器的时候,我们对它的运动状态并非一无所知,我们知道很多牛顿力学、运动学知识可以帮助我们做出判断。

- 阅读剩余部分 -

在FPN检测算法中,目标实例根据公式$k=\lfloor k_0+\log_2(\sqrt{wh}/224) \rfloor$分配到对应的level中。但是用于训练的每个实例分配到的特征级别可能不是最佳的。

本文的动机是让每个实例自由选择最佳的特征级别来优化网络。在训练过程中,根据实例内容(而不只是实例框的大小)为每个实例动态选择最合适的特征级别。

论文:Feature Selective Anchor-Free Module for Single-Shot Object Detection

代码:https://github.com/zccstig/mmdetection/tree/fsaf

https://github.com/xuannianz/FSAF

- 阅读剩余部分 -